411 research outputs found

    Cosmological constraints from applying SHAM to rescaled cosmological simulations

    Get PDF
    We place constraints on the matter density of the Universe and the amplitude of clustering using measurements of the galaxy two-point correlation function from the Sloan Digital Sky Survey (SDSS). We generate model predictions for different cosmologies by populating rescaled N-body simulations with galaxies using the subhalo abundance matching (SHAM) technique. We find ΩM = 0.29 ± 0.03 and σ8 = 0.86 ± 0.04 at 68 per cent confidence by fitting the observed two-point galaxy correlation function of galaxies brighter than Mr = -18 in a volume-limited sample of galaxies obtained by the SDSS. We discuss and quantify potential sources of systematic error and conclude that while there is scope for improving its robustness, the technique presented in this paper provides a powerful low-redshift constraint on the cosmological parameters that is complementary to other commonly used methods

    Lepton asymmetry and the cosmic QCD transition

    Full text link
    We study the influence of lepton asymmetry on the evolution of the early Universe. The lepton asymmetry ll is poorly constrained by observations and might be orders of magnitude larger than the baryon asymmetry bb, l/b2×108|l|/b \leq 2\times 10^8. We find that lepton asymmetries that are large compared to the tiny baryon asymmetry, can influence the dynamics of the QCD phase transition significantly. The cosmic trajectory in the μBT\mu_B-T phase diagram of strongly interacting matter becomes a function of lepton (flavour) asymmetry. Large lepton asymmetry could lead to a cosmic QCD phase transition of first order.Comment: 23 pages, 14 figures; matches published version, including Erratum. Conclusions, pictures, numerics remained unchange

    A Dynamic Renormalization Group Study of Active Nematics

    Full text link
    We carry out a systematic construction of the coarse-grained dynamical equation of motion for the orientational order parameter for a two-dimensional active nematic, that is a nonequilibrium steady state with uniaxial, apolar orientational order. Using the dynamical renormalization group, we show that the leading nonlinearities in this equation are marginally \textit{irrelevant}. We discover a special limit of parameters in which the equation of motion for the angle field of bears a close relation to the 2d stochastic Burgers equation. We find nevertheless that, unlike for the Burgers problem, the nonlinearity is marginally irrelevant even in this special limit, as a result of of a hidden fluctuation-dissipation relation. 2d active nematics therefore have quasi-long-range order, just like their equilibrium counterpartsComment: 31 pages 6 figure

    Constraining the cosmic radiation density due to lepton number with Big Bang Nucleosynthesis

    Get PDF
    The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis (BBN) is typically parameterized in terms of the effective number of neutrinos N_eff. This quantity, in case of no extra degrees of freedom, depends upon the chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. In the present analysis we determine the upper bounds that BBN places on N_eff from primordial neutrino--antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations. We consider quite a wide range for the total lepton number in the neutrino sector, eta_nu= eta_{nu_e}+eta_{nu_mu}+eta_{nu_tau} and the initial electron neutrino asymmetry eta_{nu_e}^in, solving the corresponding kinetic equations which rule the dynamics of neutrino (antineutrino) distributions in phase space due to collisions, pair processes and flavor oscillations. New bounds on both the total lepton number in the neutrino sector and the nu_e -bar{nu}_e asymmetry at the onset of BBN are obtained fully exploiting the time evolution of neutrino distributions, as well as the most recent determinations of primordial 2H/H density ratio and 4He mass fraction. Note that taking the baryon fraction as measured by WMAP, the 2H/H abundance plays a relevant role in constraining the allowed regions in the eta_nu -eta_{nu_e}^in plane. These bounds fix the maximum contribution of neutrinos with primordial asymmetries to N_eff as a function of the mixing parameter theta_13, and point out the upper bound N_eff < 3.4. Comparing these results with the forthcoming measurement of N_eff by the Planck satellite will likely provide insight on the nature of the radiation content of the universe.Comment: 17 pages, 9 figures, version to be published in JCA

    Rheology of Active-Particle Suspensions

    Full text link
    We study the interplay of activity, order and flow through a set of coarse-grained equations governing the hydrodynamic velocity, concentration and stress fields in a suspension of active, energy-dissipating particles. We make several predictions for the rheology of such systems, which can be tested on bacterial suspensions, cell extracts with motors and filaments, or artificial machines in a fluid. The phenomena of cytoplasmic streaming, elastotaxis and active mechanosensing find natural explanations within our model.Comment: 3 eps figures, submitted to Phys Rev Let

    BER Analysis of Full Duplex Relay assisted BPSK-SIM based VLC System for Indoor Applications

    Full text link
    This paper contemplates a relay-assisted visible light communication (VLC) system, where the light source (Table lamp) acts as a relay node and cooperates with the main light source. Following the IEEE 802.15.7r1 VLC reference channel model, we assume that there are two different light sources present in an office room. The first one is the source terminal present on the ceiling and another one is the desk lamp that serves as the relay station which works in full-duplex method. Because of the loop interference channel, we model VLC relay terminal using ray tracing simulations. We have analyzed bit error rate (BER) performance of the relay-assisted VLC system using binary phase shift keying-subcarrier intensity modulation (BPSK-SIM) technique. The proposed method outperforms existing phase shift keying (PSK) and square M-quadrature amplitude modulation (M-QAM) techniques. The proposed VLC system using BPSK-SIM technique achieves a BER performance of for an SNR of 20 dB. The results of proposed full duplex and half duplex relayed VLC system are evaluated using equal power allocation (EPA) and optimum power allocations (OPA) techniques over three different modulation schemes which are 2-PSK, square M-QAM, BPSK-SIM

    A bacterial ratchet motor

    Full text link
    Self-propelling bacteria are a dream of nano-technology. These unicellular organisms are not just capable of living and reproducing, but they can swim very efficiently, sense the environment and look for food, all packaged in a body measuring a few microns. Before such perfect machines could be artificially assembled, researchers are beginning to explore new ways to harness bacteria as propelling units for micro-devices. Proposed strategies require the careful task of aligning and binding bacterial cells on synthetic surfaces in order to have them work cooperatively. Here we show that asymmetric micro-gears can spontaneously rotate when immersed in an active bacterial bath. The propulsion mechanism is provided by the self assembly of motile Escherichia coli cells along the saw-toothed boundaries of a nano-fabricated rotor. Our results highlight the technological implications of active matter's ability to overcome the restrictions imposed by the second law of thermodynamics on equilibrium passive fluids.Comment: 4 pages, 3 figure

    Studies on immunocytochemical localization of inhibin-like material in human prostatic tissue: comparison of its distribution in normal, benign and malignant prostates.

    Get PDF
    A specific antiserum has been generated against inhibin-like material (ILM) of prostatic origin. Using the immunoperoxidase technique, localization of ILM has been examined in a total of 114 prostates including normal (4 specimens), malignant (46) and hyperplastic (55) tissues. ILM positive immunocytochemical reactions were confined to the cytoplasm and not the nucleus of the prostatic acinar cells in the three categories of prostate, whereas the stroma showed negative reactions. The intensity of positive reactions decreased in the following order: Hyperplasia, incidental and moderately differentiated carcinomas, poorly differentiated carcinomas, whereas metaplasia and granulomatous prostatitis gave negative reactions for ILM. Using this experimental protocol, 200 non-prostatic tissue were found to be completely negative, demonstrating the specificity of the test for prostatic epithelium. These findings indicate a potential use of ILM as a marker of prostatic tissue
    corecore